Combining KNN and Sentence Transformers for
Article Categorization

Christopher Brokenshire Matthew
College of William and Mary

Email: cmbrokenshire @wm.edu

Abstract—This paper presents a novel approach to categorizing
news articles using a combination of K-Nearest Neighbors (KNN)
classification and Sentence Transformers. The primary aim of
this study is to develop a method that efficiently organizes
large volumes of news articles based on their titles, thereby
enhancing the accessibility of information and improving user
experience. We leverage the SentenceTransformers framework
for vectorizing article titles into numerical embeddings, which are
then classified using a custom KNN algorithm designed for tensor
data. This approach capitalizes on the principle that articles
with similar titles often share the same category. Our results
demonstrate a significant accuracy score, indicating the efficacy
of our method in categorizing news articles. The simplicity of
our model, compared to more complex NLP systems, offers a
computationally efficient alternative while maintaining a high
level of accuracy. The paper also discusses the limitations of
our approach, particularly in domain invariance, and suggests
potential areas for future improvement. This study contributes
to the field of natural language processing by demonstrating
the application of traditional machine learning techniques in
addressing modern-day challenges in information categorization.

I. INTRODUCTION

News articles can pertain to a vast array of topics. Grouping
articles based on the category that best aligns with their
content is an efficient way to organize the immense amount
of information. A few benefits of categorizing articles is that
each article is more likely to reach its target audience, and each
user is better able to find appropriate information. However,
it takes substantial effort to sort articles based on their entire °
contents. With this in mind, our project aims to optimize the
process by implementing a KNN classification algorithm to
categorize articles based on their titles.

Our algorithm will capitalize on the idea that articles with
similar titles are likely to fall into the same category. This
justifies the utilization of a KNN approach, which is de31gned
around the foundational principle that similar data points in a
feature space will have similar target values. In an effort to i
boost accuracy, we plan to quantify the similarity between‘
two titles, or the distance between two data points, usmg
the cosine-similarity calculated by the SentenceTransformers i
python framework. =

We will begin by discussing the concept and workings of a :(f
Sentence Transformer. Afterwards, we will detail the dataset i
we selected for building and testing the model. Following
this, we will delve into the construction and tuning of the

College of William and Mary
Email: mwberthoud @wm.edu

Berthoud Lekha Reddy
College of William and Mary

Email: Lkreddy @wm.edu

custom KNN classification model we created, later presenting
the results of our testing. Finally, we will analyze the model’s
successes and failures in achieving its intended goals and
discuss the reasons behind the results.

II. APPLIED APPROACHES

A. Sentence Transformers

The SentenceTransformers framework vectorizes string
data, according to how the model specified by an argument
is trained. For our purposes we used the all-MiniLM-L6-v2
which is a MiniLM model trained over a billion training
pairs. The strings are vectorized based on Siamese BERT-
Networks, a methodology explained in Reimers et. al ., 2018
[1]. The vectorization takes into account semantic meanings,
word sizes, and more, based on how it is trained. We could
have trained our own data, but we felt this would introduce too
much of our own bias into the data, and it would be hard to
clearly define our own degree of textual similarity with which
to validate the encodings. The time complexity of encodings
increases parabolically with the length of the string, but since
we were encoding titles and not full articles, this was hardly
a relevant consideration. Example code from the Sentence-
Transformers documentation for a simple set of encodings is
below.
from sentence_transformers import

SentenceTransformer
model = SentenceTransformer (’all-MiniLM-L6-v2’)
#0Our sentences we like to encode
sentences = [’This framework generates embeddings
for each input sentence’,
"Sentences are passed as a list of string.’
"The quick brown fox jumps over the lazy dog

071

#Sentences are encoded by calling model.encode ()
) embeddings = model.encode (sentences)

#Print the embeddings

for sentence, embedding in zip (sentences, embeddings
) g
print ("Sentence:", sentence)
print ("Embedding:", embedding)
print ("")

#https://www.sbert.net/#usage

Listing 1. Encoding Example: https://www.sbert.net/usage



The embedding variable in this snippet is a numpy array
of length 384. There are therefore 384 dimensions to these
encodings.

After encoding strings in this way, we were able to cal-
culate the “distance” between them as necessary for the
KNN method. Our manner of calculating distance was cosine
similarity. This is a standard technique for comparing textual
data in Natural Language Processing. We demonstrate the
resultant similarity values with some simple examples below,
using the same libraries and model variable as Listing 1.

def cos_sim_test (sl, s2):

embl = model.encode (sl)
emb?2 = model.encode (s2)
cos_sim = float (util.cos_sim(embl, emb2))
return cos_sim
7 tests = [
["cat", "dog"l],
["cat", "Cat"],
[

"Hark upon the

["Hark upon the
rocks"],

["Hark upon the

Gale",
Gale",

"Once upon a time"],
"Professor Ye Gao
Gale", "Professor Gao rocks"
]

3

for pair in tests:
print (f" {format (cos_sim_test (pair([0],
[11),".6£")} {pair}")

pair

Listing 2. SentenceTransformer Testing

This code outputs the following values similarity values:

0.66063768 [fcat’, ’"dog’]

0.99999988 ['cat’, ’'Cat’]

0.24494889 ["Hark upon the Gale’, ’Once
upon a time’ ]

0.07204005 ["Hark upon the Gale’,

"Professor Ye Gao rocks’]
0.01792862 ["Hark upon the Gale’,
"Professor Gao rocks’]

This demonstrates that factors like word length, number of ]
words, shared words, semantic content, and even (very subtly) s
capitalization all play a part in the 384 vectorized fields of the *
encoded data. [2]

B. Dataset

Our dataset consists of 210,294 titles of news articles °
published between 2012 and 2022 that were gathered from
HuffPost and uploaded to Kaggle [3]. The following 6 features 1
are provided for each item in the dataset: the category of the
article, its headline, the contributing authors, a link to the :‘
original article, a short description of its contents, and the
date of publication. There are 42 categories into which the '°
articles are sorted. The largest 5 categories include Politics, |
Wellness, Entertainment, Travel, and Style & Beauty, which
contain 43%, precisely 90,623 data points, of the total data. "

This News Category Dataset best aligns with our project’s N
intentions as it provides a sufficient quantity of articles that »
have already been categorized by their most relevant topic and
are easily downloadable. This enhances our workflow as we
can efficiently use python to pre-process the data by isolating

the headline and category features. The process of calculating
the accuracy of our model’s predictions is also optimized as
the dataset has already established which category each data
point best corresponds with.

The potential for bias stems from the heavy over-
representation of data from 2012 to May 2018. 95% of the
headlines in this dataset are dated between 2012 and May
2018, meaning that it only includes 10,000 headlines from
May 2018 to 2022. The significance of this uneven distribution
is that it may not predict future articles’ categories in the
most modern fashion. If recent years have demonstrated a shift
in the general consensus of which category a certain article
should belong in, it is less likely to be reflected in our model’s
predictions.

C. Model

Our project adapts the K-Nearest Neighbors (KNN) al-
gorithm for text data, specifically article titles. We start by
extracting the titles and their corresponding categories into
separate arrays. Using a sentence transformer, each title is
then converted from a string to an embedded tensor, enabling
us to compare titles numerically. The challenge was that
standard KNN is designed for numerical data, not tensors. To
address this, we developed a custom KNN subclass that can
handle tensor data. This involved initializing our datasets in
the subclass differently. Thankfully, KNN does have a feature
where we can input our own custom metric as a parameter
when initializing the class. Our metric function finds the
cosine similarity between two embeddings. Each embedding
is attributed to the category of the title string it came from.
Our KNN algorithm classifies title strings by classifying their
embedding. In other words, it finds the majority category from
the k closest embeddings. Below I have attached the custom
KNN class the team developed.
def cosine_similarity_1(x, y):

cos_sim = util.cos_sim(x,
return cos_sim

y)

5 class KNNStringClassifier (KNeighborsClassifier):

def _fit(self, X, y):
self._fit_ X = X
self._fit y =y
self. y =y
return self

def X) :

[1

predict (self,
predictions =
for x in X:
#compute similarities to all points in

self._fit_X

#convert each tensor to a scalar and
store it in similarities

similarities = [self.metric(x, x_train).
item() for x_train in self._fit_X]
#find indices of k most similar
neighbors

nn_indices =
self.n_neighbors:]

np.argsort (similarities) [—

#determine the most common class among
nearest neighbors



neighbors_classes =
for idx in nn_indices]

most_common_class = Counter (
neighbors_classes) .most_common (1) [0] [0]

predictions.append (most_common_class)

[self._fit_y[idx]

return predictions

def evaluate(self, X, y_true):
#implement custom evaluation logic for
classification
y_pred = self.predict (X)
accuracy = np.mean ([pred
true in zip(y_pred, y_true)])
return accuracy

Listing 3. KNN Class

true for pred,

D. Validation

The next step for preparing our model is tuning it. Thank-
fully, in the case of KNN tuning usually just means finding
the correct k value. We tuned our model by having a training
set of 10,000 titles and a validation set 1,000. This will give
us the opportunity to see which k value tends to lead to the
best accuracy score. Due to the nature of the strings and how
much they can vary, I decided to first see how accuracy scores
varied globally. So we ran a loop that calculated the accuracy
score from k from 1 to 100 by increments of 5 as you can see
in the chart below:

KNN Classifier Accuracy vs. Number of Neighbors (k)

0 20 40 60 80 100
Number of Neighbors (k)

Fig. 1. Accuracy Score for K from 1 to 100

As you can see in the graph, the highest accuracy score is
concentrated between k =1 to k=20. So let us see the graph
of the k value in that region. See Fig.2

From illustration we see we hit a maximum at k = 9 with
an accuracy score of 64.2

III. EVALUATION
A. Results

It’s time to test the model. We chose the test set to be a
1000 datapoint subset of the dataset that the model had not
seen during training and validation. When we tested our model
on this subset we got the following accuracy score: 0.619. Is
this good?

On the surface one may think that the model is under
performing but the reality is, for the simplicity of the model,

KNN Classifier Accuracy vs. Number of Neighbors (k)

25 5.0 75 100 125 15.0 175
Number of Neighbors (k)

Fig. 2. Accuracy Score for K from 1 to 20

it’s actually quite a remarkable score. For context, there are
42 categories which means that our model is very far from
random. Additionally, on Kaggle the ranked models for this
dataset have an accuracy score of a little over 0.7. These
models used advanced NLP models like BERT to achieve their
results. It’s reassuring to know that such a simple concept is
0.08 away from the state of the art.

IV. DISCUSSION

The clear advantage of our model is its simplicity. It lever-
ages straightforward KNN regression to address a complex
modern-day NLP issue, such as article classification. Yet,
in the grand scheme of ML, while simplicity is important,
accuracy is what truly matters. So, the question really is: can
we improve the model?

It’s first smart to consider what our model is doing in the
context of this problem. The answer to this question is heavily
reliant on how the sentence transformer determines similarity.
For our project, we used one of the standard pretrained
sentence transformer models: all-MiniLM-L6-v2. As discussed
earlier, this model determines sentence similarity based on
several attributes, such as contextual word meanings, word
order and grammatical structure, and sentence length. How the
model determines sentence similarity is heavily dependent on
its training. From what my team understood about the model
we selected, these are the factors that determines sentence
similarity.

What are the implications of our metric? It’s clear that the
metric we have chosen, while seemingly effective, results in
our model being minimally domain invariant. To explain what
I mean, consider three articles: *Biden’s Favorite Place to Go
in Tahiti, ’Biden Goes to Tahiti to Visit the President,” and
"Tourist’s Favorite Places to Visit in the Bahamas.” When we
compare these sentences to each other, the cosine similarity
between the first and second sentence is 0.8, while the cosine
similarity between the first and third is 0.2. The significance
of these results is that the first and last sentences are clearly
about travel, while the second is about news. Although this is
an edge case, it highlights a significant issue with our metric:
it’s not comparing the abstract similarities, its not comparing
the generalized attributes that determine the similarity between
all news or travel articles.



So, the question now is: why is it working so well? My
team believes that it has something to do with topic recurrence.
Newspapers aim to sell as many copies as possible. As a result,
if they write an article about Biden and it sells well, they will
continue to write articles about him. The same goes for topics
like travel or parenting; articles such as "Why Is My Teen
So Moody?’ or ’Best Places to Go in Italy’ will have many
variations because they are popular. Therefore, the reason why
our model is classifying articles correctly might be because
there is an article discussing a variation of the same subject
in the training set. Our high accuracy score has much more
to do with article writers not straying from what makes them
money, and less to do with having captured the abstract idea
of what it means for an article to be about healthy living.

My team deduced that for us to improve the model, we must
build a similarity metric that compares the similarity between
sentence objectives. What information are these sentences
trying to convey in the abstract sense. Unfortunately, to do so
we would have to train a sentence transformer model which
is out of the scope of this project.

I must say, there is an advantage to our current model that
we have not yet discussed. Due to the repetitive nature of
articles and how our KNN model categorizes them, it’s evident
that the larger the training set, the higher the classification
accuracy. This makes sense because the more training articles
we have, the higher the probability that each test article will
find a variation of itself in the training set. So, why don’t we
run the algorithm with a training set of 180,000 and a test set of
18,0007 The reason is that KNN is computationally intensive,
especially when using a sentence transformer as our similarity
metric. Nevertheless, I tried training the model with 70,000
data points and testing it with 7,000. When my team ran the
model, we actually achieved an accuracy score of 0.72, which
is comparable to state-of-the-art methods. However, it took
our computers two days to perform this single computation.I
reasoned that if it was too computationally expensive for us to
document it extensively with such a large datasets (try other k
values), then its most likely not applicable for real world use,
especially once we understood why it was doing so well after
all.

V. CONCLUSION

In this project, we embarked on an ambitious journey
to categorize news articles efficiently using a combination
of K-Nearest Neighbors (KNN) classification and Sentence
Transformers. The primary objective was to leverage the power
of a simple machine learning algorithm to categorize a vast
array of articles based on their titles.

Our approach involved utilizing Sentence Transformers to
convert article titles into numerical embeddings, which were
then classified using a custom KNN algorithm designed to
handle tensor data. The model’s simplicity was a significant
advantage, allowing us to apply a classic machine learning
technique to a modern NLP challenge. We found that ti-
tles with similar embeddings often corresponded to articles

within the same category, underscoring the effectiveness of
our method.

Through rigorous testing and validation, our model achieved
a noteworthy accuracy score of 0.619, which was somewhat
surprising given the straightforward nature of our research.
However, our project also uncovered limitations, particularly
in the domain invariance of our model. The metric we used for
determining similarity, while effective, tended to focus more
on topical similarity rather than abstract thematic resemblance.
This limitation could be resolved in future work involving
a more nuanced metric or exploring other machine learning
models that might capture the essence of article content more
accurately.

In conclusion, our project has demonstrated the potential of
combining KNN with Sentence Transformers for categorizing
news articles. While there is room for improvement, particu-
larly regarding abstract similarity detection, the success of our
model in achieving considerable accuracy with a relatively
straightforward approach is encouraging. Future work could
explore more advanced models or refined metrics to further
enhance the accuracy and applicability of this method in the
ever-evolving field of NLP.

REFERENCES

[1] Reimers, Nils, and Iryna Gurevych. “Sentence-bert: Sentence embed-
dings using Siamese Bert-Networks.” Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 2019, https://doi.org/10.18653/v1/d19-1410.

[2] “SentenceTransformers Documentation — Sentence-Transformers doc-
umentation” www.sbert.net/. Accessed 7 Dec. 2023.

[3] Misra, Rishabh. “"News Category
arXiv preprint arXiv:2209.11429
https://www.kaggle.com/datasets/rmisra/news-category-dataset.
Accessed 7 Dec. 2023.

Dataset.”
(2022),



